This repository has been archived on 2025-04-04. You can view files and clone it, but cannot push or open issues or pull requests.
mathematical-algorithms/src/Poly.hs

94 lines
2.9 KiB
Haskell
Raw Normal View History

2025-03-23 16:56:30 +09:00
module Poly where
import Data.List
import Data.Maybe
import Data.Vector qualified as V
-- Zip two vectors while padding 0s on the shorter vector.
vecZipPad0With :: (Num a) => (a -> a -> a) -> V.Vector a -> V.Vector a -> V.Vector a
vecZipPad0With f xs ys = V.generate (max (V.length xs) (V.length ys)) $
\i -> fromMaybe 0 (xs V.!? i) `f` fromMaybe 0 (ys V.!? i)
-- | Polynomial type.
--
-- >>> Poly (V.fromList [1 .. 5])
-- 1 X^0 + 2 X^1 + 3 X^2 + 4 X^3 + 5 X^4
-- >>> Poly (V.fromList [1, 2]) * Poly (V.fromList [3, 4, 5])
-- 3 X^0 + 10 X^1 + 13 X^2 + 10 X^3
-- >>> Poly (V.fromList [1, 2]) * Poly (V.fromList [])
-- 0 X^0
newtype Poly a = Poly (V.Vector a)
deriving (Eq)
-- | Degree, assuming top term is nonzero
degree :: Poly a -> Int
degree (Poly f) = length f - 1
-- | Shift up polynomial by X^n
shiftUp :: (Num a) => Int -> Poly a -> Poly a
shiftUp n (Poly f) = Poly $ V.replicate n 0 <> f
-- | Shift down polynomial by X^n
shiftDown :: Int -> Poly a -> Poly a
shiftDown n (Poly f) = Poly $ V.drop n f
-- | Remainder under X^n
remXn :: Int -> Poly a -> Poly a
remXn n (Poly f) = Poly $ V.take n f
-- | Normalize polynomial, removing leading 0s
--
-- >>> normalize $ Poly (V.fromList [1, 0, 0])
-- 1 X^0
--
-- >>> normalize $ Poly (V.fromList [1, 2, 3, 0])
-- 1 X^0 + 2 X^1 + 3 X^2
normalize :: (Eq a, Num a) => Poly a -> Poly a
normalize (Poly f) = Poly remain
where
(_, remain) = V.spanR (== 0) f
-- | This Num instance implements the classical multiplication.
instance (Num a) => Num (Poly a) where
(+) :: Poly a -> Poly a -> Poly a
Poly f + Poly g = Poly $ vecZipPad0With (+) f g
(-) :: Poly a -> Poly a -> Poly a
Poly f - Poly g = Poly $ vecZipPad0With (-) f g
(*) :: Poly a -> Poly a -> Poly a
Poly f * Poly g = sum (Poly <$> mults)
where
mults = V.imap (\i fi -> V.map (fi *) (V.replicate i 0 <> g)) f
negate :: Poly a -> Poly a
negate (Poly f) = Poly $ V.map negate f
abs :: Poly a -> Poly a
abs = error "abs: invalid on poly"
signum :: Poly a -> Poly a
signum = error "signum: invalid on poly"
fromInteger :: Integer -> Poly a
fromInteger = Poly . V.singleton . fromInteger
instance (Show a) => Show (Poly a) where
show :: (Show a) => Poly a -> String
show (Poly p) = intercalate " + " . V.toList $ V.imap (\i coeff -> show coeff <> " X^" <> show i) p
karatsubaMult :: (Num a) => Poly a -> Poly a -> Poly a
karatsubaMult a b = atLog degBound a b
where
degBound = fromJust $ find (> max (degree a) (degree b)) [2 ^ i | i <- [0 :: Int ..]]
-- degBnd: power-of-two degree bound
atLog degBnd f g = case degBnd of
1 -> f * g
_ -> shiftUp degBnd prod1 + shiftUp nextBound (prodAdd - prod0 - prod1) + prod0
where
nextBound = degBnd `div` 2
f1 = shiftDown nextBound f
f0 = remXn nextBound f
g1 = shiftDown nextBound g
g0 = remXn nextBound g
prod0 = atLog nextBound f0 g0
prod1 = atLog nextBound f1 g1
prodAdd = atLog nextBound (f0 + f1) (g0 + g1)