This repository has been archived on 2025-04-04. You can view files and clone it, but cannot push or open issues or pull requests.
mathematical-algorithms-cpp/src/karatsuba.cpp

192 lines
5.2 KiB
C++
Raw Normal View History

2025-03-23 23:14:25 +09:00
#include <chrono>
#include <complex>
2025-03-23 21:28:03 +09:00
#include <iostream>
2025-03-23 23:14:25 +09:00
#include <vector>
2025-03-23 21:28:03 +09:00
using namespace std;
2025-03-23 23:14:25 +09:00
typedef complex<double> Complex;
typedef double Real;
/**
* Operator overloading for printing vectors.
* @tparam T
* @param os
* @param v
* @return
*/
template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) {
for (size_t i = 0; i < v.size(); i++) {
os << v[i] << " ";
}
return os;
}
2025-03-24 16:41:47 +09:00
2025-03-24 16:30:01 +09:00
vector<Real> random_real_vector(size_t size) {
2025-03-23 23:14:25 +09:00
auto result = vector<Real>();
for (int i = 0; i < size; i++) {
result.push_back((double)rand() / (double)RAND_MAX);
}
return result;
}
vector<Complex> vector_as_complex(vector<Real> &v) {
auto result = vector<Complex>(v.size());
for (size_t i = 0; i < v.size(); i++) {
result[i] = Complex(v[i], 0);
}
return result;
}
template <typename R> vector<R> poly_add(vector<R> &a, vector<R> &b) {
auto res = vector<R>(max(a.size(), b.size()));
for (size_t i = 0; i < a.size(); i++) {
res[i] = a[i];
}
for (size_t i = 0; i < b.size(); i++) {
res[i] += b[i];
}
return res;
}
template <typename R> vector<R> poly_sub(vector<R> &a, vector<R> &b) {
auto res = vector<R>(max(a.size(), b.size()));
for (size_t i = 0; i < a.size(); i++) {
res[i] = a[i];
}
for (size_t i = 0; i < b.size(); i++) {
res[i] -= b[i];
}
return res;
}
// Shift up degrees by n
template <typename R> vector<R> poly_shift_up(int n, vector<R> &p) {
auto result = p;
for (int i = 0; i < n; i++) {
result.insert(result.begin(), 0);
}
return result;
}
// Basic polynomial multiplication
template <typename R> vector<R> poly_mult_basic(vector<R> &a, vector<R> &b) {
if (a.size() == 0 && b.size() == 0)
return vector<R>(0);
auto res = vector<R>(a.size() + b.size() - 1, 0);
for (size_t i = 0; i < a.size(); i++) {
// Start with i 0s
auto tmp = vector<R>(i, 0);
for (R bj : b) {
tmp.push_back(a[i] * bj);
}
res = poly_add(res, tmp);
}
return res;
}
2025-03-24 16:30:01 +09:00
#define THRESHOLD 1
2025-03-23 23:20:13 +09:00
// TODO Reduce allocations
2025-03-23 23:14:25 +09:00
/**
* A step of the Karatsuba function.
* @param deg_bnd power-of-2 degree bound
*/
template <typename R>
vector<R> poly_mult_Karatsuba_step(const size_t deg_bnd, vector<R> &a,
vector<R> &b) {
2025-03-24 16:30:01 +09:00
if (deg_bnd <= THRESHOLD)
2025-03-23 23:14:25 +09:00
return poly_mult_basic(a, b);
const auto next_bnd = deg_bnd >> 1;
const auto next_bnd_in_a = min(next_bnd, a.size());
const auto next_bnd_in_b = min(next_bnd, b.size());
auto a0 = vector(a.begin(), a.begin() + next_bnd_in_a);
auto a1 = vector(a.begin() + next_bnd_in_a, a.end());
auto b0 = vector(b.begin(), b.begin() + next_bnd_in_b);
auto b1 = vector(b.begin() + next_bnd_in_b, b.end());
auto prod0 = poly_mult_Karatsuba_step(next_bnd, a0, b0);
auto prod1 = poly_mult_Karatsuba_step(next_bnd, a1, b1);
auto a01 = poly_add(a0, a1);
auto b01 = poly_add(b0, b1);
auto prod_add = poly_mult_Karatsuba_step(next_bnd, a01, b01);
auto tmp1 = poly_sub(prod_add, prod0);
auto tmp2 = poly_sub(tmp1, prod1);
auto mid_term = poly_shift_up(next_bnd, tmp2);
auto high_term = poly_shift_up(deg_bnd, prod1);
auto higher = poly_add(mid_term, high_term);
return poly_add(prod0, higher);
}
template <typename R>
vector<R> poly_mult_Karatsuba(vector<R> &a, vector<R> &b) {
size_t deg_bound = 1;
while (deg_bound < max(a.size(), b.size()))
deg_bound = deg_bound << 1;
return poly_mult_Karatsuba_step(deg_bound, a, b);
}
void basic_vs_Karatsuba(size_t size) {
auto p = random_real_vector(size);
auto q = random_real_vector(size);
cout << "Degree " << size - 1 << endl;
auto begin = chrono::high_resolution_clock::now();
poly_mult_basic(p, q);
auto end = chrono::high_resolution_clock::now();
auto spent = chrono::duration<double>(end - begin);
cout << "Basic took " << spent.count() << "s" << endl;
begin = chrono::high_resolution_clock::now();
poly_mult_Karatsuba(p, q);
end = chrono::high_resolution_clock::now();
spent = chrono::duration<double>(end - begin);
cout << "Karatsuba took " << spent.count() << "s" << endl;
}
2025-03-23 21:28:03 +09:00
int main() {
2025-03-23 23:14:25 +09:00
{
2025-03-24 16:30:01 +09:00
auto p = vector<int>{1, 2};
auto q = vector<int>{3, 4, 5};
2025-03-23 23:14:25 +09:00
cout << "P: " << p << endl;
cout << "Q: " << q << endl;
cout << "P + Q: " << poly_add(p, q) << endl;
cout << "basic P * Q: " << poly_mult_basic(p, q) << endl;
cout << "Karatsuba P * Q: " << poly_mult_Karatsuba(p, q) << endl;
cout << endl;
}
{
auto p = random_real_vector(6);
auto q = random_real_vector(8);
cout << "P: " << p << endl;
cout << "Q: " << q << endl;
cout << "basic P * Q: " << poly_mult_basic(p, q) << endl;
cout << "Karatsuba P * Q: " << poly_mult_Karatsuba(p, q) << endl;
}
2025-03-24 16:30:01 +09:00
basic_vs_Karatsuba(128);
basic_vs_Karatsuba(256);
basic_vs_Karatsuba(512);
basic_vs_Karatsuba(1024);
basic_vs_Karatsuba(2048);
basic_vs_Karatsuba(4096);
basic_vs_Karatsuba(8192);
2025-03-23 23:14:25 +09:00
// {
// auto p = random_real_vector(4000);
// auto q = random_real_vector(4000);
// auto begin = chrono::high_resolution_clock::now();
// poly_mult_Karatsuba(p, q);
// auto end = chrono::high_resolution_clock::now();
// auto spent = chrono::duration<double>(end - begin);
// cout << "Karatsuba took " << spent.count() << "s" << endl;
// }
return 0;
2025-03-23 21:28:03 +09:00
}